
2 BACKGROUND: EDIT DISTANCE

Parallel Approaches to Edit Distance
and Approximate String Matching

Cary Yang, Kevin Zhang

Carnegie Mellon University
caryy@andrew.cmu.edu, kkz@andrew.cmu.edu

Abstract

In this paper, we explore approaches to parallelizing the edit distance problem and the related approximate
string matching problem. The edit distance is a measure of the number of individual character insertions,
deletions, and substitutions requried to transform one string into another string. In the canonical dynamic
programming solution to the edit distance, a chain of dependencies renders parallelization extremely
difficult; thus, we investigate several different approaches to resolve this issue.

1 Summary

We implemented two different algo-
rithms to solve the edit distance and
related approximate string match-

ing problem with CUDA on the GPU and
pthreads on the CPU and compared the per-
formance of these different algorithms and im-
plementations.

2 Background: Edit Distance

The Edit Distance is a measure of dissimilarity
between two strings. Formally, the edit dis-
tance between strings S and T is the minimum
number of operations required to transform S
to T. The valid operations are:

• Insertion: ex: “ab”⇒ “axb”
• Deletion: ex: “abc”⇒ “ac”
• Substitution: ex: “abc”⇒ “xbc”

A recursive definition of edit distance can
now be constructed. Let S = s1 . . . sm and
T = t1 . . . tn be two strings of length m and n,
respectively. Let Di,j denote the edit distance
between the first i characters of S and the first
j characters of T.

• In the base case, we have Di,0 = D0,i = i
for all applicable i.

• For non-zero m, n, Dm,n = Dm−1,n−1
if sm = tn. Otherwise, Dm,n = 1 +
max(Dm−1,n , Dn−1,m , Dm−1,n−1).

This recursive definition lends itself nicely
to a dynamic programming (DP) solution.
Namely, we can evaluate in row-major order a
M× N matrix whose (i, j) entry is exactly Di,j.
In the table below, we see the entries evaluated
for the input strings “SPARTAN” and “PART”.

1

mailto:caryy@andrew.cmu.edu
mailto:kkz@andrew.cmu.edu


3 APPROACH 1: PARALLEL DYNAMIC PROGRAMMING

In a straightforward implementation, we
may allocate the entire table and evaluate the
entries in row order. Clearly, this algorithm
runs in Θ(M ∗ N) time and space. Being a lit-
tle more keen on space requirements, we may
note that at any given moment, only two rows
of space is required to obtain the edit distance
(lower-right entry indicated in yellow). To ac-
complish this, we simply “leap-frog” the rows
as we evaluate the table. This has the effect
of throwing away previous rows once they are
not required for the current row. If we force
the second input to be the smaller string, this
reduces space requirements to Θ(min{M, N}).

To analyze possible parallel approaches, we
must first determine critical dependencies be-
tween the entries of the table. It is not hard to
see that in the DP table, each entry depends
only on the upper neighbor, the upper-left
neighbor, and the left neighbor. In traditional
literature, the table is often evaluated in row-
major order. This poses a problem for paral-
lelization, as within a row, each entry depends
on the previous entry. However, if we process
the table in “diagonal-major” order, then new
doors are opened for parallel approaches.

3 Approach 1: Parallel Dy-
namic Programming

3.1 Details

The key observation to our approach is that the
entries of a single diagonal row of the DP ta-
ble can be evaluated independently, provided
that previous diagonals have been computed.
To see this more clearly, refer to the next im-
age. As can be seen, the entries of the blue
diagonal (size 4) can be compuated indepen-
dently once the values of the green and pink
diagonal (sizes 2 and 3) have been evaluated.
Similarly, the entries of the orange diagonal
can be computed in parallel once the blue di-
agonal is complete. Our goal was the exploit
this avenue of parallelism and implement a
multi-threaded algorithm to compute the edit
distance between very large strings.

Similar to before, only three diagonals are
required at any point in order to obtain the edit
distance. Since the length of the longest diago-
nal is equal to the length of the smaller input,
we again have reduced our space requirements
to Θ(min{M, N}).

Our first task was to implement a serial
diagonal-order implementation in c++. Be-
cause the diagonals of the table exhibit non-
uniform lengths, this proved to be an interest-
ing challenge. Once complete, we immediately
observed the following results for two 50k-
sized inputs:

• Row-order: [16.849 seconds]
• Diagonal-order: [10.324 seconds]

The runtimes may initially seem odd. Af-
ter all, the diagonal-order evaluation does no
less work than the row-order evaluation; if any-
thing, it requires more work due to the over-
head of managing complicated indices. After
some consideration, we attribute the apparent
speedup to instruction-level parallelism (ILP),
an optimization performed by specialized CPU
hardware. ILP is not present in the row-order
evaluation due to the lack of independence

2



3.2 Implementation 4 BACKGROUND: APPROXIMATE STRING MATCHING

between the entries of individual rows.

We were now ready to parallelize the
diagonal-order approach. The high level de-
sign was simple: for each diagonal, split the
work as evenly as possible among multiple
threads.

3.2 Implementation

Our parallel implementation was designed
around the HT-enabled 6-core Intel Xeon pro-
cessor; however, the concept is easily extensible
to other systems.

Our approach can be summarized as fol-
lows. As we traverse the table, we allow a
single thread to perform all the computations
when the size of the diagonal is below a serial
threshold. This is to avoid the overhead of run-
ning multiple threads on small pieces of work.
Once the diagonal is of sufficient length, work
is split evenly among all threads. At the end
of each diagonal, a synchronization barrier is
called for all threads; this is required due to
inter-diagonal dependence.

A visual mapping of six threads (one per
color) to their respective portion of the DP table
is provided below.

As can be seen, a single (blue) thread is
responsible for small “caps” in the upper left
and lower right corners of the table.

4 Background: Approximate
String Matching

Approximate string matching is a very similar
problem to edit distance, and as we’ll see soon,
involves essentially the same computation. The
main difference is that where edit distance asks
the question "what is the edit distance between
these two strings", approximate string match-
ing asks "given a pattern P, a text T, and an
integer k, what are all locations j where for
some i < j, the edit distance between P and
T[i...j] is less than k".

An example of this computation follows.

Let the edit distance function be given as
ed(s, t). Given P = "match", T = "remachine",
and k = 3, the algorithm for approximate
string matching will output 5, 6, and 7 since:

• ed(”match”, ”mac”) = 2
• ed(”match”, ”mach”) = 1
• ed(”match”, ”machi”) = 2

It may seem like this involves more compu-
tation than the original edit distance problem,
but it can be solved using exactly the same re-
currence, just a different base case and a little
post-processing.

Note that the edit distance dynamic pro-
gramming matrix for the above strings "match"
and "remachine" is as follows:

"" r e m a c h i n e
"" 0 1 2 3 4 5 6 7 8 9
m 1 1 2 2 3 4 5 6 7 8
a 2 2 2 3 2 3 4 5 6 7
t 3 3 3 3 3 3 4 5 6 7
c 4 4 4 4 4 3 4 5 6 7
h 5 5 5 5 5 4 3 4 5 6

Figure 1: Dynamic programming matrix for edit dis-
tance

To solve the approximate string matching
problem using the same procedure, we first
initialize the first row to all 0’s, and apply the
same recurrence.

3



5 APPROACH 2: BIT-PARALLEL ALGORITHM

"" r e m a c h i n e
"" 0 0 0 0 0 0 0 0 0 0
m 1 1 1 0 1 1 1 1 1 1
a 2 2 2 1 0 1 2 2 2 2
t 3 3 3 2 1 1 2 3 3 3
c 4 4 4 3 2 1 2 3 4 4
h 5 5 5 4 3 2 1 2 3 4

Figure 2: Dynamic programming matrix for approxi-
mate string matching

Then, we simply scan along the bottom row
and output all positions where the value is less
than k. Note the values 2, 1, and 2 at positions
5, 6, and 7 in the last row of the matrix.

What this transformations does is essen-
tially make insertions until the beginning of
the pattern free, allowing us to start the match
anywhere in the text. Scanning along the bot-
tom row and taking any values less than a
certain threshold instead of just taking the last
value makes deletions at the end of the pat-
tern free also, allowing us to end the match
against the pattern anywhere in the text. Thus,
this modified process finds the edit distance
between the pattern and any substring of the
text, which is exactly what we want.

Therefore, as we can see, the procedure is
analogous to the edit distance procedure, and
therefore, contains the same dependencies. To
solve with a naive, serial method would result
in an O(mn) algorithm, where m is the length
of one string and n is the length of the other,
exactly like edit distance.

5 Approach 2: Bit-parallel Al-
gorithm

5.1 Details

One observation that can be made about the
dynamic programming matrix for both the edit
distance computations and the approximate
string matching is that the difference in edit
distance value between adjacent cells is either
-1, 0, or 1.

Furthermore, in approximate string match-
ing, the matrix is fully determined by specify-

ing the vertical deltas between the values in
the matrix since the top row is entirely 0.

Given these two facts, we can store column
j of the matrix as 2 bit-vectors, Pvj and Mvj
where the ith bit of Pvj, or Pvj(i), is 1 iff the
cell (i, j) in the dynamic programming matrix
for approximate string matching has a value 1
greater than its neighbor directly above it and
Mvj(i) = 1 iff it’s the value is 1 less than its
neighbor directly above it.

Note that Pvj and Mvj are mutually exclu-
sive, that is, Pvj & Mvj = 0, and at all positions
where Pvj(i) = 0 ∧ Mvj(i) = 0, the vertical
difference between cell (i, j) and its neighbor
above is 0. Therefore, these two bit-vectors
fully specify the jth column.

Using these two bit-vectors, we can proceed
from one column to the next solely with the
use of bit-level operations!

If we let m be the length of the pattern and
n be the length of the text, then starting with
Pv0 = 1m and Mv0 = 0, we can perform the
following operations to get Pv1 and Mv1 and
eventually, the rest of the matrix [3].

Xvj(i) = Peq[tj](i) or Mvj−1(i)

Xhj(i) =

(((Peq[tj] & Pvj−1) + Pvj−1)⊕ Pvj−1)|Peq[tj]

Phj(i) = Mvj−1(i) or not (Xhj(i) or Pvj−1(i))

Mhj(i) = Pvj−1(i) and Xhj(i)

Scorej =

Scorej−1 + (1 if Phj(m))− (1 if Mhj(m))

Phj(0) = Mhj(0) = 02

Pvj(i) =

Mhj(i− 1) or not (Xvj(i) or Phj(i− 1))

Mvj(i) = Phj(i− 1) and Xvj(i)

The Score variable in the equations accumu-
lates the actual values along the bottom row
of the dynamic programming matrix and al-
lows us to determine the locations of minimal
distance.

4



5.2 Implementation 5 APPROACH 2: BIT-PARALLEL ALGORITHM

This procedure allows us to process w cells
in the dynamic programming matrix at once,
where w is the largest word size on the given
machine, and is generally 64 for most machines,
giving a potential 64x speedup over the serial
row implementation described in 3!

5.2 Implementation

We implemented this algorithm both serially
on the CPU and in parallel with CUDA on the
GPU.

The CPU implementation was reasonably
simple to implement: just translate the above
algorithm into C++ code. This algorithm was
essentially entirely serial, relying only on the
bit-level parallelism inherent in the algorithm.

To attempt to extract even more parallelism
from this algorithm and take advantage of the
numerous multiprocessing units available in
modern machines, we went beyond the algo-
rithm’s paper and wrote a CUDA implementa-
tion that uses arbitrary length bit-vectors rep-
resented as chunks of 64-bit segments, one on
each multiprocessor. Therefore, theoretically,
we could process each column of the matrix
simultaneously!

Unfortunately, CUDA has several limita-
tions that reduce the practicality of this ap-
proach.

First off, we can go back and see that the
final updating step of Pvj(i) and Mvj(i) rely
on Phj(i− 1) and Mhj(i− 1). Because the bits
are spread across processing units, there would
be necessary communication between process-
ing units at this step. However, CUDA’s block
abstraction does not permit synchronization
between blocks, and therefore, we are limited
to only 1 block.

Additionally, our code was run on NVIDIA
GTX 480 GPUs, which support up to CUDA
Compute Capability 2.0, limiting the theoreti-
cal maximum number of threads to 1536 and
the registers per thread to 63. However, at
higher register counts, the number of maxi-
mum threads per block is limited even further,
and because our kernel uses 41 registers, our
actual maximum thread count is 768. There-

fore, our CUDA kernel only supports pattern
lengths up to 1 block ∗ 768 threads / block ∗
64 characters = 49, 152 characters, which is
not large enough to see the benefits of highly
parallel computation.

Furthermore, the second step of the compu-
tation adds together bit-vectors and relies on
the carrying property of addition. Because we
have segments that are spread out across mul-
tiprocessors that represent parts of the same
bit-vector, we need arbitrary precision addi-
tion.

First, we tried computing the entire addi-
tion serially on one thread, but this was unac-
ceptably slow due to the inherent serial nature
of the computation.

We eventually settled on an implementa-
tion that uses scan as a primitive to perform
the carrying propagation.

Here’s how that works. First, we allocate a
shared array of length equal to the number of
processing units. Then, each processing unit
stores into the array at its thread index one of
the following values:
• GEN if the addition of the segment of the

bit-vector that this processing unit owns
overflowed.
• PROP if the addition did not overflow

and the result is the maximum allow-
able value for the bit-vector datatype
(0xFFFFFFFFFFFFFFFF for 64-bit repre-
sentations).
• STOP if neither of the above are true.
Then, we perform the exclusive scan, with

the operator being (in SML):

fun propFlags (c, PROP) = c
| propFlags (_, c) = c

This essentially propagates the GEN and
STOP through PROPs. Afterwards, we check
the scan result at our index and add 1 to our
addition result if the array has a GEN, or do
nothing otherwise.

Results of these two implementations can
be seen in the next section.

5



6 RESULTS

6 Results

We offer graphs of the runtime of our algo-
rithms at various input sizes and thread counts
to show its effectiveness.

All CPU tests were run on an Intel Xeon
W3670 (6 cores, 3.2GHz) processor, and the
GPU tests was run on an NVIDIA GTX 480
GPU.

6.1 Edit Distance

The following is the speedup graph for our
parallel diagonal implementation of edit dis-
tance (described in section 3.2.). The input
sizes of both strings were fixed at 50k, and
measurements were taken with respect to a
serial row-order implementation.

Recall that ILP plays a crucial row in the
performance gain; this is the reason for a 1.4x
speedup even on a single thread.

As seen, appreciable speedup is observed
up to 6 threads (running on a 6-core Intel Xeon).
The speedup takes a significant drop at 7 or
more threads, suggesting that the current im-
plementation is compute-bound, as using more
threads exchanges computational throughput
for latency hiding.

If we instead fix the usage of six threads and
change the input size, we obtain the following
speedup chart. The x-axis represents the prob-
lem size, which is defined as the product of
the lengths of two same-sized input strings (re-
call M ∗ N). As shown, our implementation
does not achieve maximum speedup until the
problem size is around 2.5 billion.

There are many factors which may con-
tribute to a loss of speedup in smaller prob-
lem instances. In addition to the typical in-
tuitive understanding of multi-threading over-
head, another key observation can be made.

Recall that the number of diagonals for a
square N × N table is on the order of N. Thus,
the number of barriers required is also on the
order of N. Consequently, the frequency of bar-
rier calls is on the order of N/N2 = 1/N. Thus,
when N becomes large, a smaller and smaller
fraction of time is spent on synchronization.
This reduces overall overhead of using multi-
ple threads, and results in a greater speedup.

6.2 Edit Distance + String Matching

In the below graphs, ROW, DIAG, and DIAG (6
CPU) reference the 3 implementations of the tra-
ditional dynamic programming parallelization
discussed in Section 3. BPM-CPU and BPM-CUDA
reference the bit-parallel approximate string

6



7 FUTURE WORK

matching implementations from Section 5.2.
First, we have a graph of runtimes where

the pattern length is kept constant. Recall that
the BPM algorithms parallelized along the pat-
tern side of the matrix, so we see some inter-
esting results here.

Figure 3: Graph of running time of our implementations,
keeping text length constant.

The first thing to note is that the first 3 algo-
rithms performed as expected. However, one
little difference is that the 6 CPU implemen-
tation was actually slower on small enough
patterns. We attribute this to the overhead
in launching threads for such small pattern
lengths.

The BPM algorithms were slightly more
interesting. First, we can see that the BPM-
CPU implementation is significantly faster than
the parallel dynamic programming solutions,
however, it did not quite reach its promised
64x speedup, stopping short at 40x speedup.
This is most likely due to the fact that the bit-
parallel algorithm performs significantly more
computation than the serial dynamic program-
ming implementation, which just performs a
min at each step, and therefore cannot reach
the speedup advertised.

Even more interesting is the fact that the
CUDA implementation for the bit-parallel al-
gorithm is slower than the CPU implementa-
tion! This can be attributed to the fact that, as
we learned from earlier in this course, paral-
lel scan is slower than sequential scan until a
large number of elements due to the overhead
of synchronization and the slower individual

GPU multiprocessors. As can be seen from the
slopes of the lines in the graph, it is likely that
the CUDA implementation would eventually
surpass the CPU implementation. However,
this could not be tested since, as discussed in
Section 5.2, the maximum pattern length we
could test was 49,152.

Next, we have a graph of the effects, on
running time, of varying text length with a
constant (and large) pattern length. Note that
all algorithms discussed in this paper are linear
with respect to text length.

Figure 4: Graph of running time of our implementations,
keeping pattern length constant.

This data is not particularly interesting, but
is included for completeness. As we can see, all
implementations are indeed linear with respect
to text length, with little to no deviation from
that pattern since any overhead caused by the
difference in implementation is masked by the
large input sizes and runtimes.

7 Future Work

Future work on this topic would involve first
attempting to reduce the register count of our
CUDA implementation of the bit-parallel al-
gorithm to allow for more threads per block,
and therefore, higher input sizes. Addition-
ally, we would also try to acquire and run our
CUDA implementation on a graphics card that
supports higher CUDA compute capability to
allow for more registers and more threads per
block, to again allow for higher input sizes.

7



REFERENCES REFERENCES

If these two goals were to be completed, we
would probably be able to finally see the CUDA
implementation beat the CPU implementation
in terms of runtime, since the benefits of par-
allel scan should become more apparent once
higher input sizes are allowed.

After this goal is complete, the next step
would be to parallelize row-wise in the matrix
instead of column-wise, since the text we’re
searching in is along the row of the matrix,
and is, in practical cases, orders of magnitude
larger than the length of the pattern text (in
computational biology applications, generally
the length of the pattern is around 30 and the
length of the text to search in is several bil-
lion base pairs [1]). A procedure to do this
transposition can be found in [2].

References

[1] Eugene Brown, Mark Chee, Thomas Gin-
eras, David Lockhart, and Gordon Wong.
Expression monitoring by hybridization to
high density oligonucleotide arrays, 2001.

[2] Kimmo Fredriksson. Row-wise tiling for
the myers’ bit-parallel approximate string
matching algorithm. In String Process-
ing and Information Retrieval, pages 66–79.
Springer, 2003.

[3] Gene Myers. A fast bit-vector algorithm
for approximate string matching based on
dynamic programming. Journal of the ACM
(JACM), 46(3):395–415, 1999.

Work by Each Student

Equal work was performed by both project
members.

8


	Summary
	Background: Edit Distance
	Approach 1: Parallel Dynamic Programming
	Details
	Implementation

	Background: Approximate String Matching
	Approach 2: Bit-parallel Algorithm
	Details
	Implementation

	Results
	Edit Distance
	Edit Distance + String Matching

	Future Work

